Overview

INTRODUCTION
Message From the President and Chief Executive Officer (p.4)
Message From the Medical Director (p.7)

MILESTONES
Texas Heart Medical Group (p.10)
U.S. News & World Report 2021 (p.12)
Texas Heart Institute and Baylor St. Luke’s Medical Center Receive Houston’s First American College of Cardiology (ACC) Transcatheter Valve Certification (p.13)
Our Global Influence: Dr. Ourania Preventza Partners with Renowned Surgeons and the Annals of Cardiothoracic Surgery (p.14)

RESEARCH
By the Numbers (p.18)
Translational Research - Five Thematic Areas (p.20)
Artificial Heart & Heart-Assist Devices
A Practical Artificial Heart Is Closer Than Ever (p.23)
Creativity Meets Innovation in the New THI IDEA Lab (p.24)
THI Launches New Innovation Partnerships (p.26)
Dr. O.H. Frazier Receives 2021 AATS Scientific Achievement Award (p.28)

Regenerative Medicine & Gene Therapy
Gene Therapy for Heart Failure (p.30)
New Therapeutic Strategy for Peripheral Arterial Disease (p.31)
Advances in the Recellularization of Heart Scaffolds (p.32)
Director Spotlight: James F. Martin, MD, PhD (p.33)

Drug Discovery & Development
Small-Molecule Drug Completes Phase I Trial (p.34)
Enhancing Vaccine Immune Responses (p.34)
Unique Discovery: Anti-Inflammatory Drug with Reduced Cardiovascular Toxicities (p.35)
Biosystems Modeling for Personalized Medicine (p.36)

Electrophysiology
TexCaLaBR – A Catheter Lab-on-the-Bench (p.39)
Developing New Technology for Patients on Ventilation (p.39)
Clinical Research: Identifying Arrhythmia Triggers (p.39)
Clinical Practice: A Hybrid Atrial Fibrillation Program Is Born (p.40)

Cell Therapy & Clinical Trials
Clinical Research Goes Virtual During the Pandemic (p.42)

Therapeutics for Inpatients with COVID-19 (p.42)
A New Direction for Cell Therapy (p.45)
Continued Leadership in Stem Cell Clinical Trials (p.45)
THI Center for Women’s Heart & Vascular Health (p.47)

Stem Cell Policy Partnership: Texas Heart Institute and Rice University Baker Institute Continue Series (p.48)
Texas Heart Institute Journal (p.54)

Dr. Zvonimir Krajcer Assumes Role of Editor-in-Chief (p.54)
School of Perfusion Technology (p.58)
Our Global Reach (p.60)

ACKNOWLEDGMENTS
Professional Staff
Leadership
Medical Executive Committee
Physician Members
Research Scientist Members
Physician Associates
THI Senior Leadership
Board of Trustees
Board Members
Board Trustee Emeritus
Board, Ex Officio
THI Journal Editorial Board & Consultants
Fellows & Teaching Staff
Introduction

Message From the President and Chief Executive Officer

Since our founding in 1962 by the world-renowned cardiac surgeon, Dr. Denton A. Cooley, the Texas Heart Institute has been synonymous with excellence and innovation in cardiovascular medicine, ground-breaking discovery, and outstanding training opportunities for the next generation of clinicians and scientists. Over the years, we have embraced new technologies and treatments and explored exciting areas of research with a singular goal - to define a new future of cardiovascular health.

We have been fortunate over the years to couple our bold and lasting vision with an outstanding Professional Staff, a visionary Board of Trustees, and the support of our community.

Today, the Texas Heart Institute is vibrant and growing. We are expanding our clinical and scientific expertise, developing innovative programs, and pioneering the next first – all in keeping with our promise of service to those with cardiovascular disease.

Interview with Dr. Joseph G. Rogers “A Vision for the Future”
Message From the Medical Director

Over the past 3 years, there has been a concerted effort to reorganize the Texas Heart Institute Professional Staff, whose members play a vital role in fulfilling the mission of the Institute. With the guidance of the Board of Trustees, I am proud to announce that the THI Professional Staff has now been completely reconstituted (members listed on pages 50-51).

THI has now expanded its activities beyond research and education to include clinical care, and this is embodied by the Texas Heart Medical Group (THMG). We believe this is a fundamental step that places THI along the path set forth by its founder 60 years ago. The clinical excellence that is traditionally found in cardiovascular surgery, anesthesiology, and cardiology is now the brightest beacon of excellence in cardiovascular care in the Texas Medical Center.

THI continues to break barriers in its research and education initiatives with deep expertise in innovative areas of translational research, clinical investigation, and medical education. THE NEXT FIRST continues to be the research priority at THI.
Milestones
tones
When Denton A. Cooley, MD, established the Texas Heart Institute nearly 60 years ago, his mission was simultaneously simple and bold: namely, to reduce the devastating toll of cardiovascular disease through innovative programs in research, education, and improved patient care. THI’s mission statement has evolved—now to deliver the future of cardiovascular health through exceptional patient care, discovery, and a commitment to learning—but the focus on excellence in cardiovascular care remains unchanged. Launched on October 1, 2020, the Texas Heart Medical Group (THMG) continues to exemplify Dr. Cooley’s original vision as the clinical practice specializes in cardiovascular care, with the singular mission to provide the highest-quality medical care in a sophisticated, welcoming, patient-oriented atmosphere.

“With the launch of Texas Heart Medical Group, THI ushered in a dynamic new era as it enters the clinical care arena,” stated Texas Heart Institute Board Chair Eric D. Wade. He added, “Texas Heart Medical Group will tap into THI’s long-standing and relentless pursuit of excellence that began with the historic breakthroughs under Dr. Cooley’s leadership and vision. I am confident in saying that he would be proud of and excited for this new chapter in THI’s dramatic story.”

– Eric D. Wade
Texas Heart Institute Board Chair

Eduardo Hernandez-Vila, MD
President of Texas Heart Medical Group
This year, Eduardo Hernandez-Vila, MD, was named President of the Texas Heart Medical Group. A practicing cardiologist since 2000, Dr. Hernandez specializes in coronary and peripheral arterial disease – as well as venous disease – focusing on both medical and interventional management.

“Dr. Hernandez is widely respected by his peers, his patients, and the broader cardiology community in equal measure,” stated Texas Heart Institute President and CEO Joseph G. Rogers, MD. Dr. Rogers added, “I look forward to Dr. Hernandez’s leadership as the group expands to provide outstanding, patient-centered care in convenient locations for our community.”

The practice serves as a home base for twelve outstanding cardiologists who are leaders in general and preventative cardiology, cardiac imaging, interventional cardiology, peripheral vascular disease, electrophysiology, and heart failure. Together, Texas Heart Medical Group’s physicians embody the totality of Texas Heart Institute as a fully integrated clinical cardiology practice encompassing the areas of education, research, and direct patient care.
Texas Heart Institute at Baylor St. Luke’s Medical Center ranked 13th in the nation among Adult Cardiology & Heart Surgery hospitals, making it the highest-ranking heart care center in Houston. As a global leader in patient care for nearly six decades, Texas Heart Institute at Baylor St. Luke’s has ranked among the top cardiovascular centers in the United States by U.S. News & World Report since the rankings first launched over 30 years ago.

The Cardiology & Heart Surgery ranking is based on analysis of patient outcomes in the medical and surgical treatment of cardiovascular disease, the volume of high-risk patients, patient experience, nurse staffing, public transparency, and use of advanced clinical technologies.

In the Cardiology & Heart Surgery category, U.S. News evaluated 592 hospitals and ranked the top 50 that care for patients who required challenging heart and vascular treatments, including heart transplants, implantation of cardiac devices such as pacemakers and defibrillators, major chest procedures, and treatments for complex cardiovascular diseases such as endocarditis, heart failure, and circulatory issues.

“For patients and their families suffering from the most complex cardiovascular conditions or who have significantly heightened risk, these rankings provide a valuable resource for locating skilled sources of care. Today, we are proud to uphold the commitment to excellence and quality of care that is synonymous with the Texas Heart Institute.”

— Joseph G. Rogers, MD
President and CEO of THI

Medical Center received the highest possible ratings for all complex cardiovascular conditions and treatments, including heart failure, abdominal aortic aneurysm repair, aortic valve surgery, heart bypass surgery, transcatheter aortic valve replacement (TAVR), and heart attack.

THI Rankings
Transcatheter Aortic Valve Replacement (TAVR) Center of Excellence

“We are proud of this designation. It validates the expertise of our team, the patient care processes we have implemented, our ability to track key performance metrics, and our commitment to continuous improvement. Our TAVR team has performed 2150 procedures in the past 9 years and is dedicated to the highest standards of quality and safety. This focus translates to superior clinical outcomes for our patients.”

– R. David Fish, MD
Interventional Cardiology, Texas Heart Medical Group

Texas Heart Institute and Baylor St. Luke’s Medical Center Receive Houston’s First American College of Cardiology (ACC) Transcatheter Valve Certification

Experts at the Texas Heart Institute and Baylor St. Luke’s Medical Center have earned a prestigious American College of Cardiology (ACC) accreditation as a transcatheter aortic valve replacement (TAVR) Center of Excellence, making their program the first in Houston to be recognized for this level of quality and clinical outcomes.

“This distinction underscores our commitment to excellence and the treatment of patients with complex cardiovascular disease,” said Texas Heart Institute’s Stephanie Coulter, MD.

The comprehensive external review and certification process acknowledges the highest standards for training, team-based care, patient-focused decision-making, and clinical performance. Earning the certification also requires participating in a TAVR national clinical database.

Centers that earn ACC Transcatheter Valve Certification follow best practices for using evidence-based medicine to support decision-making in the care of individual patients.
This past year, Texas Heart Institute surgeon Ourania Preventza, MD—the first female cardiac surgeon to be granted the title of Professor of Surgery at Baylor College of Medicine—was invited to be Guest Editor of three consecutive issues of the *Annals of Cardiothoracic Surgery*.

All three issues are focused on non-open heart, minimally invasive treatments for cardiovascular disease. The first issue, published in September 2021, was dedicated to highly specialized use of transcatheter valve devices; the second and third issues, from November 2021 and January 2022, focused on treatments for thoracic aortic disease. The issue included articles written by Dr. Preventza and other THI surgeons and cardiologists. Also included are systematic reviews, Keynote Lecture Series, featured articles, editorials, and Masters of Cardiothoracic Surgery videos that Dr. Preventza solicited from experts around the world.
Already, the issues have drawn significant attention in the cardiac surgery, vascular surgery, and cardiology communities, drawing substantial praise.

Also, in October 2021, Dr. Preventza became the first woman president of the International Society of Endovascular Specialists.

The ISEVS is a multidisciplinary society of cardiac surgeons, vascular surgeons, cardiologists, and interventional radiologists. It was founded by revolutionary cardiac surgeon Edward B. Diethrich in 1992.

Under Dr. Preventza’s leadership, ISEVS continues to enhance global education and clinical expertise in the treatment of cardiac and vascular diseases around the world. One of her most important accomplishments in the ISEVS has been establishing the society’s ninth chapter, in Lagos, Nigeria, with Herbert Oye, DO, as chapter president.

Dr. Preventza is the first female cardiac surgeon to be granted the title of Professor of Surgery at Baylor College of Medicine
Research
2021 By the Numbers

<table>
<thead>
<tr>
<th>Intellectual Property and Technology Transfer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>invention disclosures made</td>
<td>provisional patent applications submitted</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>patents issued</td>
<td>option agreements executed</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>licensed technologies in current portfolio</td>
<td>optioned technologies in current portfolio</td>
</tr>
<tr>
<td>$310,000</td>
<td></td>
</tr>
<tr>
<td>intellectual property & milestones</td>
<td></td>
</tr>
</tbody>
</table>
Office of Research Administration

- Over 100 contracts, projects, and sponsored research agreements
- 16% research investigator members or fellows of the National Academy of Inventors®
- 42 total grant proposals submitted (federal and non-federal)
- $26M total funding amounts for submitted grants
- 18 ongoing grants in post-award management

Center for Clinical Research

- 22 active studies supported by industry sponsors and federal grants, and investigator-initiated studies
- 20 studies in active study start-up (greatest number in start-up since the Center for Clinical Research’s inception)
Translational research integrates discovery science, personalized medicine, and patient- and population-based research into a multidisciplinary framework to improve health. It is the capstone of Texas Heart Institute’s mission and underlies THI’s worldwide reputation as an innovator in cardiovascular therapies. Five thematic areas are the focus of THI’s translational research efforts:
Regenerative medicine and gene therapy — Researchers at THI are pioneering ways to use cutting-edge gene therapy and gene editing technologies to develop new treatments for heart disease. THI scientists are also refining biotechnologies and developing molecular tools to advance the field of bioartificial tissues and organs. And, by taking advantage of the latest research in heart and organ development, THI scientists are leading efforts to develop the world’s first gene therapy designed to turn on naturally occurring repair mechanisms in the heart to repair damaged tissue after a heart attack and to treat heart failure—effectively making the heart better able to heal itself.

Drug discovery and development — Drugs discovered at THI are being developed to enhance stem cell transplantation, noninvasively image atherosclerosis, treat inflammation in cardiovascular disease, and enhance vaccines that combat infections that attack the heart. These efforts, led by experienced pharmaceutical teams with proven track records, have resulted in successful out-licensing of technologies and phase I clinical trials.

Electrophysiology — U.S. Food and Drug Administration (FDA) approval and commercialization of the Early Bird bleed-detection system (Saranas, Inc., Houston, Texas) is a perfect example of THI electrophysiologists advancing innovative science into clinical practice. Groundbreaking translational research in managing cardiac arrhythmias is following a similar path, including the development of wireless pacemakers and bioengineered conductive nanofibers to manage and treat heart disease.

Cell therapy and clinical trials — Clinical research at THI is advancing the science of medicine in the same pioneering spirit that inspired the Institute’s founding nearly 60 years ago. From first-in-man clinical trials of cell-based therapies for heart failure and other cardiovascular diseases, to our selection as a site for international clinical trials of new treatments for COVID-19 patients, our clinical research center’s reputation of excellence strengthens our ability to advance cardiovascular medicine and benefit patients.
A New Documentary Chronicles the Development of the Permanent Artificial Heart

Doctors and multimedia and communications specialists at the Texas Heart Institute (THI) worked with award-winning New York-based filmmaker Brian Schildhorn on a documentary titled Permanent Artificial Hearts are Closer Than You Think.

Watch the Documentary Here
Texas Heart Institute’s Cardiovascular Surgery Research Laboratory—now the cornerstone of the THI Center for Preclinical Surgical & Interventional Research—has pioneered the development of cardiovascular devices, surgical procedures, and mechanical circulatory support approaches to treat patients with heart disease. There are an estimated 26 million people worldwide living with heart failure, with approximately half of those patients dying within 5 years of receiving their diagnosis. Although some patients with end-stage heart failure receive a heart transplant, the limited supply of donor hearts (or a patient’s ineligibility for transplantation) makes circulatory support devices such as ventricular assist devices (VADs) or total artificial hearts (TAHs) an important treatment alternative. Investigators at THI continue to build on their strong history of advances in this field as they develop and test novel support devices to provide improved treatment options to adults and children with heart failure and congenital heart diseases.

A Practical Artificial Heart Is Closer Than Ever

BiVACOR Total Artificial Heart one beat closer to use in humans – BiVACOR, Inc. and the Texas Heart Institute’s Center for Preclinical, Surgical, and Interventional Research, led by **O.H. Frazier, MD.** were awarded a National Institutes of Health (NIH) phase II SBIR grant for Good Laboratory Practice (GLP) testing of the total artificial heart. GLP testing is the final stage of preclinical work before petitioning the U.S. Food and Drug Administration (FDA) to initiate clinical trials.

Funded by a separate, $700K NIH Phase II SBIR grant, THI performed proof-of-concept studies in which, for the first time, the BiVACOR Total Artificial Heart was successfully implanted in a preclinical model that represents pediatric patients. If shown to be safe and durable, this technology has the potential to be transformative for both adult and pediatric patients with heart failure.
The Texas Heart Institute Innovative Device & Engineering Applications (IDEA) Laboratory is where creativity and innovation meet healthcare. This was the first full year of operation of the IDEA Lab, whose mission is to discover and implement innovative solutions in the development of cardiovascular devices. Led by Yaxin Wang, PhD, and working in close collaboration with O.H. Frazier, MD, a major focus of the group is on ventricular assist devices for pediatric populations with heart failure, for whom current treatment options are extremely
limited. The lab is also exploring miniaturized pump designs to help adult patients who were born with a single heart ventricle and who underwent surgeries as children to provide “Fontan” circulation. Other areas of investigation include improving systems for ex vivo lung perfusion to increase the pool of donor lungs that are acceptable for transplant. The IDEA lab is funded through an NIH R01 grant and through foundation grants that were awarded in 2021.
Texas Heart Institute’s new Innovation Partnerships program seeks to develop new medical technologies by facilitating THI partnerships with outside entities and launching spin-out companies from THI labs. In this spirit, THI worked closely with the Texas Medical Center’s TMC Innovation (TMCi) to provide mentorship and research services to healthcare startups from around the world. THI personnel collaborated with participants in two TMCi programs, TMC Biodesign and the TMCx Accelerator program, to advance the development of cardiovascular-focused products. These partnerships resulted in both preclinical and clinical research contracts with THI, maintaining THI’s position on the cutting edge of breakthroughs in patient care. As a result of THI’s mentorship, THI and TMCi jointly filed a patent on technology to be licensed to a startup that has already raised $500,000. Notably, this was the first time TMCi has filed for intellectual property in conjunction with another institution. THI was also an official sponsor with the Ignite Accelerator, a program focused on addressing gender parity in the healthcare industry. As a customer sponsor, THI provided mentorship and feedback to a female-led health tech startup, resulting in a pilot study with the Texas Heart Medical Group. Allison Post, PhD, THI bioengineer and manager of the Innovation Partnerships program, also discussed THI’s innovation plans with the Houston InnovationMap podcaster Natalie Harms. Dr. Post’s Houston Innovators Podcast interview was selected by the editor as one of the top 7 she conducted in 2021. THI Innovation Partnerships will continue to build on this momentum in 2022.
Allison Post, PhD
THI Bioengineer and
Manager of the
Innovation
Partnerships program
Dr. O.H. Frazier Receives 2021 AATS Scientific Achievement Award

The Singular Honor Further Cements the Texas Heart Institute Surgical Pioneer’s Generational Legacy

O. H. Frazier, MD, was the recipient of the 2021 Scientific Achievement Award from the American Association for Thoracic Surgery (AATS). Established in 1994, the Award serves to honor individuals who have made scientific contributions to the field of thoracic surgery worthy of the highest recognition that the Association can bestow. Previous Houston recipients include Michael DeBakey, MD (1999) and Denton Cooley, MD (2000), two of the most distinguished cardiothoracic surgeons in the history of the field.

THI held a ceremony in Dr. Frazier’s honor, and the First Lady of Houston, Elyse Lanier, presented Dr. Frazier with a City of Houston Proclamation on behalf of Mayor Sylvester Turner. Surgeons from around the world attended virtually and shared their gratitude for Dr. Frazier’s immeasurable contributions to advancing cardiovascular care, which have improved lives around the world.

“As the cornerstone of one of the most dominant and innovative cardiac programs in the world, Dr. O.H. Frazier is a true cardiovascular pioneer whose impact on patients and the specialty is immeasurable. The leadership, innovation, and ingenuity that he has modeled throughout his career have revolutionized the field of heart transplantation and cardiac assist devices. It is truly a distinct honor of my career for the opportunity to present the 2021 Scientific Achievement Award to Dr. Frazier,” said Marc R. Moon, MD, President of the American Association for Thoracic Surgery.”
For more than 40 years, Dr. Frazier has been dedicated to improving the treatment of severe heart failure and advancing heart transplantation and artificial devices that substitute for or assist with the pumping action of the human heart. He served on the NIH National Heart, Lung, and Blood Institute Advisory Committee and chaired the original committee that initiated the first federal allocation system for the distribution of hearts for transplantation. As a result of his work, Dr. Frazier is one of the top transplantation and mechanical circulatory support surgeons in the world. Throughout the 1970s and 1980s, Dr. Frazier conducted experimental work toward developing an implantable LVAD. In 2011, he implanted the first successful continuous-flow total artificial heart by using two second-generation HeartMate II LVADs to replace a patient’s failing heart.

“Being recognized by one’s peers is something I value to the utmost degree,” Dr. Frazier noted. He added, “I have long respected the work of the AATS and am grateful to the entire organization for selecting me out of so many other worthy individuals. It is an honor to join two of my mentors, Drs. Cooley and DeBakey, in receiving the Scientific Achievement Award. Any award that includes even one of them, let alone both, among its recipients is one that anyone in the medical field would feel immeasurable pride in receiving.”
Gene Therapy for Heart Failure

In the United States, approximately 6 million patients over age 20 suffer from heart failure. Heart failure is irreversible and worsens over time. The 5-year survival rate for patients with Stage D heart failure, the most advanced form of the disease, is only 20%.

The dismal outcomes for patients with heart failure are largely due to the fact that the heart is a nonregenerative organ; cardiac muscle cells, known as cardiomyocytes, are highly specialized and have a limited capacity for self-renewal. Patients suffering from heart failure have very limited treatment options, and up to this point, it has been essentially impossible to heal injured heart muscle in humans regardless of available technology and knowledge. James F. Martin, MD, PhD, and his Cardiomyocyte Renewal Laboratory at THI could change this.

THI scientists have discovered a gene therapy-based approach that could eventually lead to a new treatment strategy for heart failure. By directly administering viral vectors that target genes involved in organ development into heart muscle, the group showed that they could repair failing hearts in animal models. This work was published in the prestigious journal Science Translational Medicine. The technology behind this innovative treatment approach has been licensed to YAP Therapeutics, Inc., which is currently planning phase I clinical trials in humans.

“These findings from Dr. Martin and his team at the Texas Heart Institute Cardiomyocyte Renewal Laboratory and its newest venture, the McGill Gene Editing Lab, cannot be overstated in their magnitude,” noted Emerson Perin, MD, PhD, THI’s Medical Director and a co-investigator. He added, “The practical application of YAP101 gene therapy is significant, and it has the potential to become a paradigm-changing treatment for heart failure.”

YAP Therapeutics is a company co-founded by Dr. Martin with the late James T. Willerson, MD, former President of the THI, and Olav Bergheim, Founder and Managing Director of the life science venture accelerator Fjord Ventures, to develop and commercialize medicines that treat severe diseases through tissue regeneration. According to Dr. Martin, “The plan is to advance our gene therapy, take it to clinical trials, and ultimately treat people. The goal here is to translate the work of our research teams at Texas Heart and at Baylor College of Medicine into a life-changing medicine, labeled YAP101, for people with heart failure.”
New Therapeutic Strategy for Peripheral Arterial Disease

The ability of muscle to regenerate itself gradually declines with age. This decline poses a fundamental challenge to the repair of damaged skeletal muscle in older patients with peripheral arterial disease (PAD). Despite the high incidence of PAD, current therapies for it are ineffective in replacing damaged muscle tissue with new, functional muscle. Therefore, identifying new treatment approaches for PAD is the focus of a collaborative effort between investigators in THI’s Cardiomyocyte Renewal Laboratory and Molecular Cardiology Research Laboratories. Drs. James F. Martin, Richard A.F. Dixon, and their teams demonstrated for the first time that inhibiting the Hippo pathway in a mouse model of PAD resulted not only in neovascularization (new blood vessel growth) and improved blood flow in the hind limb but also skeletal muscle regeneration from resident stem cells, which improved running endurance. This strategy may overcome the current limitation of functional skeletal muscle regeneration in aged populations with PAD or muscle injury. This study was published in the journal Stem Cells.

Read the Study Here
Investigators in the Regenerative Medicine Research Department at THI seek a long-term solution to the donor heart shortage through whole-organ bioengineering, as well as novel tissue-engineering approaches to advance cardiovascular disease research. Led by Camila Hochman-Mendez, PhD, the group has focused on specific milestones that will advance the regenerative medicine field toward the ultimate goal of recellularizing human hearts for transplant. Recent advances include recellularization of the left ventricle of a rabbit heart scaffold at a cellular density and a level of structural integrity surpassing anything previously reported. This work was recently published in Acta Biomaterialia, one of the top 5 materials science journals worldwide.

Read the Study Here
Over his career as a researcher, Dr. Martin has authored more than 170 peer-reviewed papers in top scientific journals such as Nature, Science, Cell, Developmental Cell, PLOS Genetics, Development, and PNAS (H-index 79). Recently inducted into the 2021 class of Senior Members at The National Academy of Inventors (NAI), he holds 9 U.S. patents and applications, including one provisional application. Dr. Martin’s research has received support from numerous granting agencies and foundations, including the National Institutes of Health’s National Heart, Lung, and Blood Institute; Department of Defense; the State of Texas; Vivian L. Smith Foundation; The Brown Foundation, Inc.; Saving tiny Hearts Society; Roderick D. MacDonald Research Fund; American Heart Association; LeDucq Foundation’s Transatlantic Networks of Excellence in Cardiovascular Research; and Additional Ventures.

Dr. Martin and his team in the Cardiomyocyte Renewal Laboratory share the goal of providing new treatment options for patients with heart failure or heart injury, and those born with congenital heart defects, especially those with severely underdeveloped left hearts. The team’s fundamental discovery of the Hippo “stop growth” genetic pathway and their insights into its molecular mechanisms have provided a novel approach to heart muscle regeneration. In animal models of heart disease, inhibition of this pathway leads to “direct cardiogenesis” and repair of injured heart muscle by stimulating the multiplication of existing heart cells. In keeping with THI’s historical focus on translational research – transforming laboratory discoveries into new therapies and medical devices – Dr. Martin, his team, and their collaborators have developed a targeted gene therapy that shows promising heart-repair results in animals. Dr. Martin also seeks to use cutting-edge gene editing technology to develop novel cardiac therapies.

“Our work represents a major clinical breakthrough that could lead to a treatment to reverse heart failure and effectively cure the number one cause of death in America.”

— James F. Martin, MD, PhD
Director, Cardiomyocyte Renewal Laboratory
Scientists and researchers in Texas Heart Institute’s Molecular Cardiology Research Laboratories (MCRL) are ideally positioned to discover and develop new cardiovascular drugs. The team approaches clinical challenges using a two-pronged approach: They combine their detailed insights into the molecular mechanisms of heart and vascular diseases with the drug-discovery expertise they honed while working in the pharmaceutical industry. By discovering novel drug compounds and then developing promising candidates, the team produces unique small-molecule drugs and compounds that can improve the diagnosis, treatment, and prevention of cardiovascular disease. MCRL investigators collaborate across departments, disciplines, and research institutions to identify unmet clinical needs and devise new treatment options for patients.

Small-molecule Drug Completes Phase I Trial
An NIH-sponsored Phase I clinical trial in healthy volunteers was completed that evaluated the safety and bioavailability of the first small-molecule drug developed at THI to enter human testing. The drug, a novel integrin activator, was found to be safe and well-tolerated, with no serious adverse events detected. It can be taken by mouth (orally bioavailable); two 50-mg soft gel capsules yielded the targeted optimal pharmacokinetic dose. In preclinical studies, the drug has been shown to enhance stem cell transplant, as well as to improve the body’s immune response to vaccines (see below) and cancer immunotherapies. The results from this Phase I study will be used to support future trials of the drug for these clinical indications.

Enhancing Vaccine Immune Responses
A strong correlation exists between certain infectious diseases and cardiovascular complications. These diseases include influenza, COVID-19, and Chagas disease. In the case of influenza and COVID, elderly people are particularly susceptible, as the ability of the immune system to respond to infections becomes compromised with age. Although vaccines have proven effective in greatly reducing the risk of infection and serious illness in the general population, the immune response to many vaccines, including those targeting influenza and COVID-19, is not as robust in

“Although Chagas is not an overly common ailment, it is a very serious disease that can cause heart failure and stroke with lethal consequences. The study speaks to the power of multidisciplinary scientific collaboration and would not have been possible without the efforts of the talented individuals at 7 Hills Pharma and UTMB.”

– Darren G. Woodside, PhD Vice President for Research
Anti-inflammatory Drug with Reduced Cardiovascular Toxicities

Inhibiting the signaling pathways of cellular receptors involved in physiological responses is a common approach to treat inflammatory diseases. However, drugs targeting kinase pathways are notoriously non-selective, leading to unwanted side effects that often include cardiovascular toxicities, or damage to the heart and blood vessels. MCRL investigators have identified small-molecule compounds that can inhibit a kinase called “Syk” that binds to the cytoplasmic tails of a class of cell adhesion receptors called integrins. This interaction is key to triggering an inflammatory response. The compounds inhibit signaling by Syk and decrease expression of inflammatory cytokines by leukocytes, a type of immune cell. This discovery is unique in that the drugs do not bind at the conserved kinase binding sites typically targeted by the pharmaceutical industry and thus show better selectivity—or the ability to produce the intended effect—and, therefore, fewer potential toxicities. This work was published in *Frontiers in Immunology.*

MCRL investigators and their collaborators have discovered a simple way to enhance the immune response to vaccines against infections linked to cardiovascular disease. They have developed a drug that has proven safe and orally available in clinical trials (see above) and that has been shown in pre-clinical models to enhance the immune response to influenza, COVID-19, and Chagas vaccines when dosed systemically, separate from the vaccine. This suggests that the drug could be combined with numerous vaccines that have already been formulated and stockpiled. A proof-of-concept study with an experimental Chagas vaccine was published this year in the journal *Vaccines.* Unlike flu and COVID-19, no Chagas vaccine is currently approved for clinical use, and no adjuvant had yet proved effective in enhancing the response to the particular vaccine used in this study.
Blood flow simulations in the circle of Willis models constructed from patient imaging data. Results show the spatial distribution of critical wall shear rate (WSR) exceeding the coagulation limit (> 5000 s⁻¹) of a pediatric patient with moyamoya disease (left) who presented with a right-sided stroke, and an age- and sex-matched control subject (right) at peak systole (t = 0.3 s). Extreme WSRs (about 9 times higher than that in the control subject) in the blood vessels of the left side of the brain signify an increased risk of thrombus formation, potentially leading to ischemic events. This patient, for example, had a left-sided stroke two months later.

Biosystems Modeling for Personalized Medicine

In an NIH-supported collaborative project with Texas Children’s Hospital and the University of Texas Health Science Center Houston, an image-based computational modeling toolset was developed to noninvasively assess stroke risk in pediatric patients suffering from moyamoya disease (MMD), a cerebrovascular condition that causes narrowing of the arteries that supply the brain, leading to recurring ischemic and hemorrhagic strokes. By using the imaging data from a patient who had suffered a right-sided stroke, blood flow was simulated in the circle of Willis (CoW), a branch point that distributes oxygenated blood throughout the brain. This modeling illuminated several mechanisms that led to a subsequent left-sided stroke and that could be predictors of future stroke. Ideally, such patient-specific biosystems modeling could be used to help ensure that patients at risk of recurrent stroke are properly followed up and treated before strokes occur. The study was published in *Biomechanics and Modeling in Mechanobiology*.
"Angiograms of a normal pediatric brain and the brain of a patient with moyamoya disease with characteristic vessel that look like a ‘puff of smoke’ due to compensatory collateralization—the formation of extra blood vessels to make up for reduced blood supply to the brain. The dashed circle highlights the circle of Willis territory. Insets show a schematic of the cross-section of a normal artery and vessel occlusion."

— Shaolie S. Hossain, PhD
Assistant Investigator

Angiograms from a healthy subject (a) and a pediatric MMD patient (b). The patient’s angiogram shows the characteristic “puff of smoke” due to compensatory collateralization. The dashed circle highlights the CoW territory. Insets show a schematic of the cross-section of a normal artery (c) and that of an MMD patient (d). Vessel occlusion in MMD results from a combination of hyperplasia of smooth muscle cells (*) and luminal thrombosis (arrow).
VIDEO! The Heart Beat: What’s Next for XN Health?

Above: TexCaLaBR – A Catheter Lab on-the-Bench
The Electrophysiology Clinical Research & Innovations (EPCRI) department provides infrastructure for translational and clinical cardiac arrhythmia research and innovation at the Texas Heart Institute. Led by Director Mehdi Razavi, MD, EPCRI’s team of physicians and research engineers focuses on translational research to develop novel devices and techniques to detect, manage, and treat various cardiac conditions, particularly heart-rhythm diseases. Importantly, the group shares their expertise in engineering and medical device development to help advance projects beyond cardiac applications, with the broader goal of improving healthcare outcomes and quality of life for patients. The team has helped make THI an internationally recognized leader in the field of cardiac arrhythmia research and management. This past year, they forged new partnerships with the TMC and accelerators, launched several new initiatives, and expanded existing research collaborations.

TexCaLaBR – A Catheter Lab-on-the-Bench

Clinical and preclinical settings provide only limited opportunity to directly evaluate and characterize the effects of ablation techniques on cardiac tissue. The EPCRI department has created TexCaLaBR, a versatile benchtop system for training physicians and testing ablation input parameters in an ex vivo, tissue-based experimental model. The team hopes that test studies performed using TexCaLaBR will yield insights that improve heart ablation techniques and reduce procedural complications, such as potentially life-threatening damage to the esophagus during ablation. Recently established relationships with the medical device companies Biosense Webster, Inc. and Boston Scientific have set the stage to initiate an electrophysiology physician-training program that will service the entire Southwest region of the United States.

Developing New Technology for Patients on Ventilation

Dr. Razavi and the engineers in EPCRI provided prototyping services to Houston-based XN Health as a part of the Roderick D. MacDonald Research Fund grant awarded to the EPCRI to advance the life-support weaning technology so critical to COVID-19 patients requiring ventilator support. The nerve-stimulation technology is designed to prevent a harmful side-effect of mechanical ventilation known as ventilator-induced diaphragm dysfunction (VIDD). THI and XN Health collaborated closely with TMC Innovation (TMCi), which filed a new patent with THI that is being licensed out to XN Health.

Clinical Research: Identifying Arrhythmia Triggers

EPCRI investigators and their collaborators have taken a big-data approach to understanding the factors that can trigger cardiovascular events, with an added emphasis on the effects of coronaviruses on the cardiovascular system. Over the past 7-8 years, THI Research Scientist Payam Safavi-Naeini, MD, has worked in collaboration with Mohammad Madjid, MD, at the McGovern Medical School at The University of Texas Health Science Center at Houston (now at the David Geffen School of Medicine, UCLA) to identify triggers of cardiovascular events.

The investigators analyzed the Zio cardiac-monitoring patch database, which contains data from more than 800,000 arrhythmia cases, to discover what role influenza plays in triggering different types of arrhythmias. In addition, the investigators reviewed the Medtronic database (which has data from more than 160,000 cases) to determine the extent to which influenza and COVID-19 can trigger arrhythmias. They published their findings in *JAMA Cardiology*.

JAMA Cardiology Review: COVID-19 and Potential Effects on the Heart & Vascular System

4th most cited paper in *JAMA*, with more than 1400 citations.
Patients with long-standing persistent atrial fibrillation have been waiting for breakthrough treatments, and in 2021, a promising hybrid procedure gained U.S. Food and Drug Administration (FDA) approval to help patients in advanced stages of the disease. Abdi Rasekh, MD, and Jennifer Cozart, MD, developed and implemented a new Hybrid Atrial Fibrillation Program at THI that leverages cutting-edge technologies.

The AtriCure EPi-Sense System enables a surgeon to perform minimally invasive, closed-chest epicardial ablation (ie, from outside the heart muscle) for patients with atrial fibrillation. In the hybrid procedure, this technique is combined with endocardial radiofrequency ablation (ie, from inside the heart) performed by an electrophysiologist. Results of the CONVERGE (Epi/Endo Ablation For Treatment of Persistent Atrial Fibrillation (AF)) clinical trial showed that use of the hybrid procedure was superior to endocardial ablation alone in patients with advanced atrial fibrillation. The FDA’s approval of the Epi-Sense system is aligned with the hybrid treatment program created by Drs. Cozart and Rasekh, demonstrating how collaborative efforts between cardiac surgeons and electrophysiologists can help to improve outcomes for these patients.

Clinical Practice: A Hybrid Atrial Fibrillation Program Is Born

“Atrial fibrillation affects over 33 million people around the globe, and we now have emerging technologies to treat advanced stages of the disease.”

— Jennifer Cozart, MD
Cardiothoracic and Vascular Surgeon

Read About the New Program Here
The Texas Heart Institute (THI) Center for Clinical Research (CCR) supports all areas of cardiovascular clinical research, from protocol development to trial facilitation and post-trial assessment and reporting. Our team of experts supports clinical research management activities for all THI research departments, in addition to clinical research management activities outsourced by private-practice and academic clinicians. Currently, CCR supports clinical research in all areas of cardiovascular medicine, including cardiovascular surgery, electrophysiology, interventional cardiology, infectious disease, devices, pharmaceuticals, biologics, and diagnostics.

Clinical Research Goes Virtual During the Pandemic
THI CCR joined the fight against COVID-19 in 2020 and continued its efforts in 2021.

In the midst of COVID, CCR participated in the center’s first DeCentralized Trial (DCT). The DCT study was an opportunity to bring a virtual, patient-centered approach to a traditional clinical trial design using diagnostic wearables, virtual patient interactions, and other forms of technology. THI participated in the CHIEF-HF (Canagliflozin: Impact on Health Status, Quality of Life and Functional Status in Heart Failure) DCT, which completed enrollment in 2021.

Therapeutics for Inpatients with COVID-19
Under the leadership of Emerson C. Perin MD, PhD, who is serving as the study Principal Investigator, CCR is actively enrolling patients in a trial named ACTIV-3 TICO (A Multicenter, Adaptive, Randomized, Blinded Controlled Trial of the Safety and Efficacy of Investigational Therapeutics for Hospitalized Patients with COVID-19). Sponsored by the National Institutes of Health (NIH), TICO is a unique master protocol research platform used to evaluate the safety and efficacy of multiple investigational agents for treating patients with COVID-19. Investigational drugs being tested under the TICO platform of studies have included monoclonal antibodies, DARPin proteins, and other antiviral drugs. TICO is a collaborative project with Baylor College of Medicine.

Learn More About Our Clinical Trials Here
“This cell therapy uniquely targets inflammation as a core mechanism of the disease and is designed to be an additive treatment option to what are already the best evidence-based heart failure medicines available to patients. I am extremely encouraged by these clinical findings that extend the benefits of cells to preventing heart attack and stroke in addition to having local benefits in the heart.”

— Emerson C. Perin, MD, PhD
Principal Investigator, DREAM-HF Trial
A New Direction for Cell Therapy

Treating inflamed hearts with cells may lead to broader health benefits

Cell therapy reduces risk of heart attack and stroke in heart failure patients with underlying inflammation –
A late-breaking clinical trial (DREAM-HF; Efficacy and Safety of Allogeneic Mesenchymal Precursor Cells for the Treatment of Heart Failure) was presented by Emerson C. Perin, MD, PhD, at the American Heart Association 2021 Scientific Sessions. DREAM-HF is the single largest trial of cell-based therapy for heart failure, with 565 patients enrolled across 51 sites throughout the US and Canada with a mean follow-up of 30 months. In heart failure patients on the best guideline-directed medical therapy, treatment with cells injected directly into their hearts proved to have local and systemic benefits. The study demonstrated reductions in heart attack and stroke of up to 80% in patients with high levels of inflammation. A pivotal phase III trial based on these findings is currently being planned and could shepherd in a new era in treatment strategies for heart failure patients. Cell therapies in ongoing trials at THI include treatments for drug-induced cardiomyopathy in cancer patients and for non-ischemic dilated cardiomyopathy. Also in 2021, CONCERT-HF (Combination of Mesenchymal and C-kit+ Cardiac Stem Cells as Regenerative Therapy for Heart Failure) trial results were published in the European Journal of Heart Failure and showed that directly injecting two different types of stem cells into the heart could reduce the risk of major cardiac adverse events and improve patients’ quality of life. This study concluded THI’s 12-year participation in the NIH-funded Cardiovascular Cell Therapy Research Network (CCTRN).

Continued Leadership in Stem Cell Clinical Trials
In conjunction with The University of Texas MD Anderson Cancer Center, the CCR is participating in a trial funded by the Texas Medical Center titled “Trial With MSCs vs Standard of Care in Cardiomyopathy: Randomized 3-Arm Trial with Standard of Care Alone vs Either Intravenous Infusion or Transendocardial Injection of Allogeneic Bone Marrow Derived Multipotent Mesenchymal Stromal Cells (MSCs) plus Standard of Care in Patients with Anthracycline-Associated Cardiomyopathy.” This study is evaluating the safety of adding mesenchymal stem cells (MSCs) to standard-of-care drugs for patients with heart failure caused by anthracyclines (a type of chemotherapy drug). The stem cells are derived from the bone marrow of healthy donors. Patients receive MSCs injected into the heart through a catheter or in an IV.

CCR also is participating in a study funded by the US Department of Defense and sponsored by the University of Miami: A Phase IIIB Randomized, Placebo-Controlled, Multicenter Study of the Comparative Efficacy and Safety of Transendocardial Injection of Allogeneic-MSC Versus Placebo in Patients with Non-Ischemic Dilated Cardiomyopathy (DCM II). The purpose of the DCM II trial is to determine whether giving allogeneic human mesenchymal stem cells (hMSCs) transendocardially to patients with nonischemic dilated cardiomyopathy (NIDCM) is safe and whether treatment with hMSCs produces greater improvement in heart function in some patients than in others because of their genetics. CCR is working closely with the Department of Stem Cell Transplantation and Cellular Therapy at MD Anderson Cancer Center, which is handling the processing of the stem cells for the research patients at THI.
WOMEN-FOCUSED Clinical Research SINCE 2010
Under the direction of Stephanie Coulter, MD, the THI Center for Women’s Heart & Vascular Health seeks to answer unmet clinical needs related to the prevention, diagnosis, and treatment of women’s heart and vascular disease. THI Women’s Center investigators, volunteers, and community partners strive to reduce the impact of heart disease on women and their families through a combination of outreach, patient and professional education, and research.

The Center has placed a special emphasis on women-focused clinical research since its founding in 2010, particularly through its ongoing Houston HeartReach (HHR) research registry. Women who attend HHR health screening events can consent to have their health data included in the registry; when their data is analyzed together, it can help identify heart disease trends and risk factors across an ethnically and culturally diverse population of women. The data also helps Women’s Center investigators and their collaborators identify trends that will shape further hypothesis-driven research into the specific factors affecting women’s cardiovascular health.

In 2021, the Women’s Center embarked on two new areas of research that will benefit women and men. An extensive database was created to include all percutaneous valve procedures performed at the Texas Heart Institute. This new database is the ideal tool to assess quality and outcomes from percutaneous valve procedures conducted at our institution. Multiple investigators are using the data to conduct outcomes studies or as a point of reference to evaluate new ways to approach valve disease.

Women’s Center investigators are also taking a data-based approach to improve cardiovascular care for patients with obesity, which has reached epidemic proportions in America. Over 70% of the US population is currently considered overweight or obese. Self-reported obesity statistics by state show 16 states—including Texas—have populations with average body mass indexes (BMIs) above 25 kg/m². By race, Hispanic and Non-Hispanic Black people have the highest risk of obesity.

Obesity can cause high blood pressure, Type 2 diabetes, coronary heart disease, heart failure, and other health problems. Studies have found a relationship between higher BMI and mortality, but larger database analyses are needed to understand the impact of concomitant conditions on study findings. THI now aims to evaluate behavior and risk stratification in obese patients with cardiovascular disease by analyzing its database registry of over 186,000 surgical and cardiac cases. This new initiative will enable THI to develop a unique reference point for new guidelines and preventive measurements that could benefit obese patients who may be at higher risk with certain procedures.

Dr. Briana Costello and Dr. Stephanie Coulter discuss heart disease, increased risk with weight gain, heart attack, stroke, and more.
Texas Heart Institute Partners with Rice University’s Baker Institute for Fifth Annual Stem Cell Policy Panel Session as Part of Ongoing Lecture Series

Texas Heart Institute has aligned its thought leadership in cardiology research with the internationally renowned Baker Institute for Public Policy at Rice University for an insightful and thought-provoking panel session. Dating back to 2016, the policy lecture series has covered various topics related to the intersection of stem cell research and public policy. This year’s session focused on the importance of clinical trials, new data on uses of cell-based therapies to treat heart disease, and the risks associated with unproven stem cell treatments.

During the course of the virtual webinar, THI Medical Director Emerson C. Perin, MD, PhD, and Mayo Clinic Associate Professor of Biomedical Ethics Zubin Master, PhD, assessed the landscape for stem cell therapies and collectively reflected on how unproven stem cell treatments can negatively affect patient health, clinical research, and the perceptions of policymakers—ultimately slowing the development of future cell-based therapies.

The annual stem cell policy lecture series is co-sponsored by the Baker Institute’s Center for Health and Biosciences and THI. Support for the program has been provided by a grant from the George and Mary Josephine Hamman Foundation. To date, the series has held five events and produced two research papers. In 2019, the event Texas’ Stem Cell Future: Accessing Outcome Data from Experimental Interventions was held at the Texas State Capitol in Austin, Texas.

A video recording of the May 2021 panel session can be accessed HERE. All Past Events HERE

Read Related Article in the Texas Heart Institute Journal.
Professional Staff

The Texas Heart Institute Professional Staff consists of cardiologists, cardiovascular surgeons, scientists, and specialists in related disciplines who are committed to the educational and research mission of the Institute. THI Professional Staff members are approved by the THI Medical Executive Committee and THI Board of Trustees.

Leadership
Emerson C. Perin, MD, PhD, FACC
Stephanie Coulter, MD, FACC, FASE

THI Medical Executive Committee
Jennifer Cozart, MD
R. David Fish, MD
Joggy K. George, MD
Eduardo Hernandez-Vila, MD
Mehran Massumi, MD
Mehdi Razavi, MD
John Seger, MD
George Younis, MD

Physician Members - Cardiology
Jonathan Aliota, MD
Paolo E. Angelini, MD
Salman Bandeali, MD
Bruce E. Barnum, MD
Arthur W. Bracey, MD
Jie (Jay) Cheng, MD, PhD
Benjamin Cheong, MD
Andrew Civitello, MD
Patrick J. Cook, MD
Briana Costello, MD, FSCAI
Reynolds Delgado III, MD
Jorge Escobar, MD
Sayed F. Feghali, MD
Jorge Garcia-Gregory, MD
Joggy K. George, MD
Jorge Guttin, MD
Eduardo Hernandez-Vila, MD
Patrick Hogan, MD
Surendra K. Jain, MD
Zvonimir Krajcer, MD
D. Richard Leachman, MD
J. Alberto Lopez, MD
Roberto Lufschanowski, MD
Mehran Massumi, MD
Andres Mesa, MD
Maher M. Nasser, MD
Atasu K. Nayak, MD
Ali Reza Nazeri, MD
Emerson Perin, MD, PhD, FACC
Alexander Postalian, MD, FSCAI
Saleem Raslan, MD
Mehdi Razavi, MD
Joseph G. Rogers, MD
Mark Schnee, MD
John Seger, MD
Samar Sheeth, MD
Neil Strickman, MD
John Tyler, MD
Robert P. Walmsley, MD
Amy Woodruff, MD
George Younis, MD

Physician Members - Cardiothoracic Surgery
William E. Cohn, MD
Jennifer Cozart, MD
O.H. Frazier, MD
Charles H. Hallman, MD
James J. Livesay, MD
Marc Moon, MD

Professional Staff as of June 2022
Research Scientist Members
Ronald J. Biediger, PhD
L. Maximilian Buja, MD
Karla Campos-Arce
Chu-Huang (Mendel) Chen, MD, PhD
Gil Costas
Richard A. F. Dixon, PhD
Abdelmotagaly Mohamed
Elgalad, MD, PhD
Camila Hochman-Mendez, MSc, PhD
Shaolie S. Hossain, PhD
Ke Li, MD
Xiao Li, PhD
Shijie Liu
James F. Martin, MD, PhD
Dianna Mleiwicz, MD, PhD
Raja Muthupillai, PhD
Payam Safavi-Naeini, MD
Ana Maria Segura, MD, MPH
Heinrich Taegtmeyer, MD, DPhil
Peter Vanderslice, PhD
Jun Wang, PhD
Darren G. Woodside, PhD
Yong-Jian Geng, MD

Physician Associates - Cardiology
David Aguilar, MD
Mahboob Alam, MD
Christie Ballantyne, MD
Yochai Birnbaum, MD
Jose Diez, MD
Sheila K. Heinele, MD
Srikanth Koneru, MD
Nilesh Mathuria, MD
Warren Moore, MD
Ajith P. Nair, MD
Joseph P. Navarijo, MD
Selby Oberton, MD
Juan Carlos Plana, MD
Abdi Rasekh, MD
Joanna Molina Razavi, MD
Mourad Senussi, MD
Scott R. Sherron, MD
Guilherme V. Silva, MD
Leo Simpson, MD
Raymond Stainback, MD

Physician Associates - CV Anesthesia
James M. Anton, MD
Joshua B. Cohen, MD
John R. Cooper, Jr., MD
Joseph Creo, MD
Jose Diaz-Gomez, MD, FCCM
Kishan Dwarkanath, MD
Katherine Gordon, MD
Kirk Jackson, MD
Ali Khalifa, MD
Wanda C. Miller-Hance, MD
Thomas Powell, MD
Daniel Tolpin, MD
Byron E. Tsusaki, DO

Physician Associates - Cardiothoracic Surgery
Subhasis Chatterjee, MD, FACS
Joseph S. Coselli, MD
Ravi Ghanta, MD
Scott A. LeMaire, MD
Kenneth Liao, MD
Gabriel Loor, MD
Vicente Orozco-Sevilla, MD
Ourania Preventza, MD, FACS, MBA
Todd K. Rosengart, MD
Alexis E. Shafii, MD

Physician Associates - Other
Barry R. Davis, MD, PhD
William Goins, MD
Diana Guerra, MD
Marcia A. Kielhofner, MD
Barry J. Zeluff, MD
THI Senior Leadership

Joseph G. Rogers, MD (President & CEO)
Emerson C. Perin, MD, PhD
Howard K. Schramm, MBA

Keri Sprung, MBA
Darren Woodside, PhD

Board of Trustees

Eric D. Wade (Chair)

Alfred C. Glassell, III (Vice Chair)

Members

Robert T. Blakely
David M. Grimes, II
T. Douglas Lawson, PhD
Bradley T. Lembcke, MD
Gina A. Luna*
Rodney H. Margolis**
Thomas McGinn, MD

Reed Morian
David A. Ott, MD
Mark Parrington
Randa Safady, PhD
Marc Shapiro***
Alan M. Speir, MD
Liz Youngblood, MBA, RN, FACHE

THI Board Trustee Emeritus

David M. Carmichael
Jerome E. Granato, MD

THI Board, Ex Officio

Joseph G. Rogers, MD

* Served through April 2022
** Served through December 2022
*** Joined April 2022
In 2021, Zvonimir Krajcer, MD, assumed the role of Editor-in-Chief of the Texas Heart Institute Journal, a peer-reviewed journal published by THI as part of its medical education program.

Since 1974, the Journal has reached millions of readers around the world, with an emphasis on disseminating information to physicians in practice. For more information, visit texasheart.org/education/thi-journal.

The THI Journal’s former editors—Drs. Robert J. Hall, James J. Ferguson III, and James T. Willerson—were committed to providing physicians and healthcare professionals with information related to all aspects of treating patients who have cardiovascular disease. Their standards for quality and integrity were high, and Dr. Krajcer will build upon the strong foundation they established.

Dr. Krajcer is an interventional cardiologist at the Texas Heart Medical Group, a member of THI’s Professional Staff, and an active member of the THI Cardiovascular Disease Fellowship Program at Baylor St. Luke’s Medical Center. He is an internationally recognized pioneer in his field and the Immediate Past President of the International Society for Endovascular Specialists (ISEVS).
Editorial Board and Consultants

Editor-in-Chief
Zvonimir Krajcer, MD

Associate Editors
Stephanie A. Coulter, MD
José G. Díez, MD
Emerson C. Perin, MD, PhD
Alexander Postalian, MD

Assistant Editors
Briana Costello, MD

Former Editors
Robert J. Hall, MD
James J. Ferguson III, MD
James T. Willerson, MD

Structural Heart Disease
Juan Carlos Plana, MD
Michael J. Reardon, MD

Electrophysiology
Gerald V. Naccarelli, MD
Mohammad Saeed, MD

Congenital Heart Disease
Dhaval Parekh, MD

Peripheral Vascular Disease
Miguel Montero-Baker, MD

Cardiovascular Surgery
Ourania Preventza, MD

Imaging
Srikanth Koneru, MD

Coronary Interventions
Alexander Postalian, MD
George A. Younis, MD

Carotid Artery Disease
Gary S. Roubin, MD

Cancer
Jean-Bernard Durand, MD

Editorial Board
Ali F. AbuRahma, MD | Charleston, West Virginia
H. Vernon Anderson, MD | Houston, Texas
Paolo Angelini, MD | Houston, Texas
Gary M. Ansel, MD | Columbus, Ohio
Stephen R. Bailey, MD | Shreveport, Louisiana
Yochai Birnbaum, MD | Houston, Texas
Joseph S. Coselli, MD | Houston, Texas
Tony Das, MD | Dallas, Texas
Reynolds M. Delgado III, MD | Houston, Texas
O.H. Frazier, MD | Houston, Texas
Hemal Gada, MD | Harrisburg, Pennsylvania
Jaafer Golzar, MD | Oak Lawn, Illinois
Michael R. Jaff, DO | Boston, Massachusetts
John L. Jefferies, MD, MPH | Memphis, Tennessee
James J. Livesay, MD | Houston, Texas
Gabriel Loor, MD | Houston, Texas

David D. McPherson, MD | Houston, Texas
Leslie W. Miller, MD | Tampa, Florida
Gustavo S. Oderich, MD | Houston, Texas
Constantino Peña, MD | Miami, Florida
William C. Roberts, MD, MACC | Dallas, Texas
Todd K. Rosengart, MD | Houston, Texas
Raymond F. Stainback, MD | Houston, Texas
Sherif Sultan, MD | Galway, Ireland
Vinod Thourani, MD | Atlanta, Georgia
Giovanni Torsello, MD | Münster, Germany
Ramon L. Varcoe, MBBS | Randwick, Australia
Ron Waksman, MD | Washington, DC
Christopher J. White, MD | New Orleans, Louisiana
Edward T.H. Yeh, MD | Little Rock, Arkansas
Thomas Zeller, MD | Bad Krozingen, Germany

Editorial Consultants
Benjamin Y.C. Cheong, MD | Houston, Texas
Richard A.F. Dixon, PhD | Houston, Texas
Eduardo A. Hernandez-Vila, MD | Houston, Texas
Roberto Lufschanowski, MD | Houston, Texas
Warren H. Moore, MD | Houston, Texas
Steven E. Nissen, MD | Cleveland, Ohio

Igor F. Palacios, MD | Boston, Massachusetts
Abdi Rasekh, MD | Houston, Texas
Mehdi Razavi, MD | Houston, Texas
Guilherme V. Silva, MD | Houston, Texas
Robert D. Simari, MD | Kansas City, Kansas
Over the past 50 years, the THI Fellowship program has evolved and grown organically to meet the needs of our trainees while providing vital support to our clinical affiliate hospital. The fellows are deployed in a learning strategy that promotes excellence while improving patient length of stay and quality metrics at our hospital partner. The structured curriculum has become the backbone of the cardiac unit at the Texas Heart Institute and promotes comradery between the fellows, faculty, and clinical staff. The Noon Conferences and institution-wide Cardiology Grand Rounds feature local, regional, and national leaders in their fields from around the country to enhance the academic experience.

The program structure benefits the learning environment, as faculty, fellows, and staff have the opportunity to jointly attend numerous educational lectures, case conferences, subspecialty conferences including cardiac catheterization, echocardiography, electrophysiology, heart failure, and STEMI conferences, journal clubs, quality/metrics sessions, and morbidity and mortality discussions.

“THI fellows are based at a single facility, which is a luxury for a fellowship program. Our institution-based fellowship program encourages the culture of a single institution and fosters collegiality among staff cardiologists, fellowship peers, nurses, and other support staff.”

— Stephanie Coulter, MD
Fellowship Program Director

Fellows

Texas Heart Institute is dedicated to training the next generation of physicians, researchers, and specialists. Meet the fellows currently participating in our various Fellowship & Residency programs.

Cardiovascular Disease Fellows

Javid Alakbarli, MD
Joseph Allencheril, MD
Anish Badjatiya, MD
Isabel Balachandran, MD
Adam Brouillard, MD
Jordan Gales, MD
Lauren Golden, MD
Milad El Hajj, MD
Michael Hermelin, MD
Kim–Trang Ho, MD
Sudeep Kuchibhotla, MD
Kaleb Lambeth, MD
Jason Liu, MD
Patrick Marcus, MD
Robert Paisley, MD
Saad Rehman, MD
Matthew Segar, MD
Mitch Tan, MD
Brian Yum, MD

Clinical Cardiac Electrophysiology Fellows

Gilad Birnbaum, MD
Grant Heberton, MD
Austin Howard, MD
Robert Paisley, MD

Interventional Cardiology Fellows

Robert Bagwell, MD
Michael Harms, MD
Numan Khan, MD

Thoracic Surgery Residents

Ahmed Ali, MD
Peral Baral, MD
Alin Cheran, MD
Matthew Egyud, MD
Sarah Foyil, MD
Nabeel Gul, MD
Mohammad Jafferji, MD
Abraham Katz, MD
Chibueze Onyemkpa, MD
Krishna Patel, MD
Vivekkumar Patel, MD
Hoang-Vu Tran, MD

Advanced Heart Failure & Transplant Medicine

Tamer Amer, MD
Salman Bandeali, MD

Texas Heart Institute is dedicated to training the next generation of physicians, researchers, and specialists. Meet the fellows currently participating in our various Fellowship & Residency programs.
Cardiovascular Disease Faculty
The institute boasts a robust faculty of over 70 clinical cardiologists within every practice model, including single- and multi-subspecialty cardiologists, private, academic, and hybrid models. This provides a unique training opportunity for fellows in the program and is a large part of what makes our program outstanding. Stephanie Coulter, MD, FACC, is the Program Director for the THI Cardiovascular Disease Fellowship, and George Younis, MD, is the Associate Program Director.

Cardiovascular Disease Program Directors
Stephanie Coulter, MD, FACC, FASE George Younis, MD

Cardiology Subspecialty Fellowship Program Directors
R. David Fish, MD Mohammad Saeed, MD Andrew Civitello, MD

Cardiology Service Teaching Staff

<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Aguilar</td>
<td>MD</td>
</tr>
<tr>
<td>Paolo E. Angelini</td>
<td>MD</td>
</tr>
<tr>
<td>Salman Bandeali</td>
<td>MD</td>
</tr>
<tr>
<td>Bruce E. Barnum</td>
<td>MD</td>
</tr>
<tr>
<td>Alexander Butkevich</td>
<td>MD</td>
</tr>
<tr>
<td>Mihail G. Chelu</td>
<td>MD, PhD, FHRS</td>
</tr>
<tr>
<td>Jie (Jay) Cheng</td>
<td>MD, PhD</td>
</tr>
<tr>
<td>Benjamin Cheong</td>
<td>MD</td>
</tr>
<tr>
<td>Andrew Civitello</td>
<td>MD</td>
</tr>
<tr>
<td>Patrick J. Cook</td>
<td>MD</td>
</tr>
<tr>
<td>Briana Costello</td>
<td>MD</td>
</tr>
<tr>
<td>Stephanie A. Coulter</td>
<td>MD, FACC, FASE</td>
</tr>
<tr>
<td>Jose Diez</td>
<td>MD</td>
</tr>
<tr>
<td>Sidney Edelman</td>
<td>PhD</td>
</tr>
<tr>
<td>Peter Ermis</td>
<td>MD</td>
</tr>
<tr>
<td>Jorge Escobar</td>
<td>MD</td>
</tr>
<tr>
<td>Sayed F. Feghali</td>
<td>MD</td>
</tr>
<tr>
<td>R. David Fish</td>
<td>MD</td>
</tr>
<tr>
<td>Joggy K. George</td>
<td>MD</td>
</tr>
<tr>
<td>Jorge Garcia-Gregory</td>
<td>MD</td>
</tr>
<tr>
<td>Mohammad Ghaliachi</td>
<td>MD</td>
</tr>
<tr>
<td>Sheila K. Heinle</td>
<td>MD</td>
</tr>
<tr>
<td>Eduardo Hernandez-Vila</td>
<td>MD</td>
</tr>
<tr>
<td>Surendra K. Jain</td>
<td>MD</td>
</tr>
<tr>
<td>Carlos Jessurun</td>
<td>MD</td>
</tr>
<tr>
<td>Zvonimir Krajcer</td>
<td>MD</td>
</tr>
<tr>
<td>Wilson Lam</td>
<td>MD</td>
</tr>
<tr>
<td>D. Richard Leachman</td>
<td>MD</td>
</tr>
<tr>
<td>J. Alberto Lopez</td>
<td>MD</td>
</tr>
<tr>
<td>Pablo Lozano</td>
<td>MD</td>
</tr>
<tr>
<td>Roberto Lufschanowski</td>
<td>MD</td>
</tr>
<tr>
<td>Mehran Massumi</td>
<td>MD</td>
</tr>
<tr>
<td>Nilesh Mathuria</td>
<td>MD</td>
</tr>
<tr>
<td>Andres Mesa</td>
<td>MD</td>
</tr>
<tr>
<td>Michael McArdrle</td>
<td>MD</td>
</tr>
<tr>
<td>Michael Mihalick</td>
<td>MD</td>
</tr>
<tr>
<td>Majdud Mirzai-Tehrane</td>
<td>MD</td>
</tr>
<tr>
<td>Joanna Molina Razavi</td>
<td>MD</td>
</tr>
<tr>
<td>Warren Moore</td>
<td>MD</td>
</tr>
<tr>
<td>Ali Mortazavi</td>
<td>MD</td>
</tr>
<tr>
<td>Ajith P. Nair</td>
<td>MD</td>
</tr>
<tr>
<td>Maher M. Nasser</td>
<td>MD</td>
</tr>
<tr>
<td>Joseph P. Navario</td>
<td>MD</td>
</tr>
</tbody>
</table>

Electrophysiology Cardiology Teaching Staff

<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mihail G. Chelu</td>
<td>MD, PhD, FHRS</td>
</tr>
<tr>
<td>Jie (Jay) Cheng</td>
<td>MD, PhD</td>
</tr>
<tr>
<td>J. Alberto Lopez</td>
<td>MD</td>
</tr>
<tr>
<td>Abdil Rasekh</td>
<td>MD</td>
</tr>
<tr>
<td>Mohammad Saeed</td>
<td>MD</td>
</tr>
<tr>
<td>John Seger</td>
<td>MD</td>
</tr>
<tr>
<td>Mehdiz Razavi</td>
<td>MD</td>
</tr>
<tr>
<td>Muhammad Allah Sabee</td>
<td>MD</td>
</tr>
</tbody>
</table>

Interventional Cardiology Teaching Staff

<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paolo E. Angelini</td>
<td>MD</td>
</tr>
<tr>
<td>Salman Bandeali</td>
<td>MD</td>
</tr>
<tr>
<td>Andrew Civitello</td>
<td>MD</td>
</tr>
<tr>
<td>Briana Costello</td>
<td>MD</td>
</tr>
<tr>
<td>Sayed F. Feghali</td>
<td>MD</td>
</tr>
<tr>
<td>R. David Fish</td>
<td>MD</td>
</tr>
<tr>
<td>Joggy K. George</td>
<td>MD</td>
</tr>
<tr>
<td>Eduardo Hernandez-Vila</td>
<td>MD</td>
</tr>
<tr>
<td>Surendra K. Jain</td>
<td>MD</td>
</tr>
<tr>
<td>Ali Mortazavi</td>
<td>MD</td>
</tr>
<tr>
<td>Majhur M. Nasser</td>
<td>MD</td>
</tr>
<tr>
<td>Atasu K. Nayak</td>
<td>MD</td>
</tr>
<tr>
<td>Emerson C. Perin</td>
<td>MD, PhD, FACC</td>
</tr>
<tr>
<td>Alexander Postalian</td>
<td>MD</td>
</tr>
</tbody>
</table>

Advanced Heart Failure and Transplant Cardiology Teaching Staff

<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander Butkevich</td>
<td>MD</td>
</tr>
<tr>
<td>Andrew Civitello</td>
<td>MD</td>
</tr>
<tr>
<td>Reynolds Delgado III</td>
<td>MD</td>
</tr>
<tr>
<td>Joggy K. George</td>
<td>MD</td>
</tr>
<tr>
<td>Ajith P. Nair</td>
<td>MD</td>
</tr>
<tr>
<td>Selby Oberton</td>
<td>MD</td>
</tr>
<tr>
<td>Priyanka Sen</td>
<td>MD</td>
</tr>
<tr>
<td>Leo Simpson</td>
<td>MD</td>
</tr>
</tbody>
</table>

Echocardiology Teaching Staff

<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephanie Coulter</td>
<td>MD, FACC, FASE</td>
</tr>
<tr>
<td>Sheila K. Heinle</td>
<td>MD</td>
</tr>
<tr>
<td>Carlos Jessurun</td>
<td>MD</td>
</tr>
<tr>
<td>Mohammad Mihalick</td>
<td>MD</td>
</tr>
<tr>
<td>Majdud Mirzai-Tehrane</td>
<td>MD</td>
</tr>
<tr>
<td>Ali Mortazavi</td>
<td>MD</td>
</tr>
<tr>
<td>Joseph P. Navario</td>
<td>MD</td>
</tr>
<tr>
<td>Atasu K. Nayak</td>
<td>MD</td>
</tr>
<tr>
<td>Rupa Puttappa</td>
<td>MD</td>
</tr>
<tr>
<td>Raymond Stainback</td>
<td>MD</td>
</tr>
<tr>
<td>Amy Woodruff</td>
<td>MD</td>
</tr>
</tbody>
</table>

Nuclear Teaching Staff

<table>
<thead>
<tr>
<th>Faculty Name</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pat Ford</td>
<td>MD</td>
</tr>
<tr>
<td>Warren Moore</td>
<td>MD</td>
</tr>
</tbody>
</table>
The THI School of Perfusion Technology was established in 1971 to train cardiovascular perfusionists, who play a critical role in operating the circulation equipment that sustains patients during open-heart surgery and other medical procedures. The school was the first of its kind to be accredited in the United States. Led by Director and Clinical Coordinator Deborah Lowery Adams, LP, CCP, the program offers a post-baccalaureate certification in perfusion technology; this 18-month schedule combines academic coursework and clinical rotations to prepare trainees to become a Certified Clinical Perfusionist. In March 2021, the Perfusion School established an educational partnership with Dell Children’s Medical Center and UT Health Austin to provide a unique clinical experience for student perfusionists in a pediatric setting. Perfusion students from THI will have the opportunity to perform a 4-week clinical rotation at Dell Children’s Medical Center in Austin, Texas, in coordination with the Heart Transplant and Clinical Perfusion programs in Dell Children’s Texas Center for Pediatric and Congenital Heart Disease.
Sharing scientific discoveries advances the Texas Heart Institute’s mission and contributes important knowledge to the field globally. The ultimate goal is to improve further discovery and share outcomes to advance patient care.

In 2021, Texas Heart Institute members published 354 articles in reputable scientific and medical journals around the world with the help of the Texas Heart Institute Scientific Publications, Visual Communications, Library & Learning Resource Center, and Continuing Medical Education support teams, who provide the researchers with professional, scientific editorial, and multimedia services.
For over 40 years, THI’s Office of Continuing Medical Education (CME) has been recognized as an accredited provider of relevant, effective, and practice-based CME activities that support the improvement of health care quality around the world. THI collaborates with its clinical partners to provide physicians and medical professionals with comprehensive and innovative CME activities that are designed to increase medical knowledge and skills and change practice behavior to improve patient care. These goals are accomplished by recruiting program directors and speakers for a series of high-quality CME offerings.

- **14** Accredited live virtual CME symposia
- **13** Regularly scheduled series
- **3** Journal CME activities
- **38** Online enduring programs certified
- **5,503** Physicians participated in THI’s CME-accredited activities
- **3,434** Non-physicians participated in THI’s CME-accredited activities
- **96** Physicians earned American Board of Internal Medicine Maintenance of Certification points from THI
THI Website 2021
Texasheart.org

- 8.1 Million Pageviews
- 5.5 Million Site Users
- 12.85 Million Organic Search Visits

240 Countries, Territories & Dependencies Accessing Website

400 Heart Health Topics & Articles in Spanish & English