Search our website Find job opportunies at THI and St. Luke's Find a doctor location and contact information
About UsResearchEducationCommunity Outreach & Heart HealthPatient CareSupport Us
News and Publications
Texas Heart Institute - Symbol of Excellence
  Back to previous page

Click here to make a donation.

Farish Fund Supports Collaboration to
Study Plaques That Cause Most Heart Attacks 

Program Pairs UT's Institute for Computational Engineering
and Sciences with Texas Heart Institute

Houston, Texas (July 31, 2013)  – The William Stamps Farish Fund in Houston has donated $400,000 to a collaboration between the Institute for Computational Engineering and Sciences (ICES) at The University of Texas at Austin and the Texas Heart Institute (THI) to study life-threatening vulnerable plaques, the cause of at least two-thirds of all heart attacks, and new ways to prevent them. 

The gift will underwrite two, three-year research positions for a Ph.D. student and a postdoctoral fellow assigned to the ongoing collaboration.

"We are very grateful for this important gift from the Farish Fund. It comes at a time when interest in computational medicine and particularly in modeling functions of the cardiovascular system are at an all-time high," said J. Tinsley Oden, director of ICES and professor of mathematics, and aerospace engineering and engineering mechanics. "And we are excited for this gift's part in building a strong collaboration between ICES and a leading national heart center, the Texas Heart Institute." 

"Our thanks to the Farish family and the foundation for this generous support of our work," said Dr. James T. Willerson, THI president and medical director. "Being able to detect vulnerable atherosclerotic plaques noninvasively and intervene before they rupture and cause heart attacks or strokes is important to everyone, and this support will help us in our quest to achieve that goal." 

Illustration of an artery with vulnerable plaqueVulnerable plaques are fatty lipid pool deposits in the inner layer of the arterial wall. Unfortunately, standard medical imaging tests such as MRIs, CT-scans, external ultrasound and coronary angiography fail to detect them since they often do not cause significant narrowing of the coronary artery. ICES Professor Thomas J.R. Hughes and ICES JTO Faculty Fellow and THI Research Scientist / Assistant Professor Shaolie Hossain, created a 3-D model of a heart drug delivery system that demonstrates how new patient-specific imagery and nanoparticles can be used to potentially detect vulnerable plaques and precisely deliver supplemental drugs tailored to each patient's anatomy and physiology. 

"Everybody hears about heart disease and heart attacks, yet vulnerable plaques are often the source — they are very insidious," says Hughes, a professor of aerospace engineering and engineering mechanics. 

New imaging technologies have yielded promising results. For example, virtual histology intravascular ultrasound (VH-IVUS) generates images of an artery cross section from an ultrasound catheter tracked through the vasculature. It can distinguish between low-risk artery wall thickening and a high-risk lesion. Once identified, current drugs such as statins prevent about 30 percent of vulnerable plaque heart attacks or strokes. 

"Both detection and treatment of vulnerable plaque represent huge unmet clinical needs," says Hughes. "If a vulnerable plaque ruptures and blocks flow to an area of the heart, it's a heart attack; if it blocks an artery in the brain, it's a stroke." New studies propose supplementing statins with drugs delivered directly to diseased arteries to rapidly stabilize vulnerable plaques and prevent rupture. 

"Using this newly available information from a patient's VH-IVUS, we can generate models showing the specific geometry of a patient's arterial wall, as well as the fine junctures among arteries," says Hossain. "The methodology will allow a physician to identify the location of the vulnerable plaque and inject a customized amount of the drug at a specific site tailored to the patient's artery structure and blood flow features for the best outcome." 

"To model these very complicated systems takes millions of equations that need to be solved at each of millions of time steps to do simulations, so the computational burden is enormous," Hughes says. 

The treatment represents a continuation of decades of work by Hughes and his students to develop effective patient-specific heart disease interventions.

Pre-clinical validation of the methodology is the next step.

"This will take us closer to the clinical work to help develop new, noninvasive procedures for new drugs," Hossain says.

Institute for Computational Engineering and Sciences logoThe Institute for Computational Engineering and Sciences (ICES) at the University of Texas at Austin ( is an organized research unit created to foster the development of interdisciplinary programs in computational sciences and engineering (CSE), mathematical modeling, applied mathematics, software engineering, and computational visualization. The Institute currently supports eleven research centers and alliances and six research groups, and with additional units still in the planning stages. Read more news from ICES.

For media inquiries please contact:
Director of Public Affairs
Texas Heart Institute
Frank Michel  ♦  832-355-9510  ♦ 

For THI media profile, see Public Affairs.

Like us on Facebook Follow us on Twitter Subscribe to us on YouTube Find Us on Flicikr Follow Us on Pinterest Add us on Google+ Find us on LinkedIn 

Please contact our Webmaster with questions or comments.
Terms of Use and Privacy Policy
© Copyright Texas Heart Institute
All rights reserved.